40 research outputs found

    Landslides Detection and Mapping with an Advanced Multi-Temporal Satellite Optical Technique

    Get PDF
    Landslides are catastrophic natural phenomena occurring as a consequence of climatic, tectonic, and human activities, sometimes combined among them. Mostly due to climate change effects, the frequency of occurrence of these events has quickly grown in recent years, with a consequent increase in related damage, both in terms of loss of human life and effects on the involved infrastructures. Therefore, implementing properly actions to mitigate consequences from slope instability is fundamental to reduce their impact on society. Satellite systems, thanks to the advantages offered by their global view and sampling repetition capability, have proven to be valid tools to be used for these activities in addition to traditional techniques based on in situ measurements. In this work, we propose an advanced multitemporal technique aimed at identifying and mapping landslides using satellite-derived land cover information. Data acquired by the Multispectral Instrument (MSI) sensor aboard the Copernicus Sentinel-2 platforms were used to investigate a landslide affecting Pomarico city (southern Italy) in January 2019. Results achieved indicate the capability of the proposed methodology in identifying, with a good trade-off between reliability and sensitivity, the area affected by the landslide not just immediately after the event, but also a few months later. The technique was implemented within the Google Earth Engine Platform, so that it is completely automatic and could be applied everywhere. Therefore, its potential for supporting mitigation activities of landslide risks is evident

    A Multi-temporal Analysis of AMSR-E Data for Flood and Discharge Monitoring during the 2008 Flood in Iowa

    Full text link
    The objective of this work is to demonstrate the potential of using passive microwave data to monitor flood and discharge conditions and to infer watershed hydraulic and hydrologic parameters. The case study is the major flood in Iowa in summer 2008. A new Polarisation Ratio Variation Index (PRVI) was developed based on a multi-temporal analysis of 37 GHz satellite imagery from the Advanced Microwave Scanning Radiometer (AMSR-E) to calculate and detect anomalies in soil moisture and/or inundated areas. The Robust Satellite Technique (RST) which is a change detection approach based on the analysis of historical satellite records was adopted. A rating curve has been developed to assess the relationship between PRVI values and discharge observations downstream. A time-lag term has been introduced and adjusted to account for the changing delay between PRVI and streamflow. Moreover, the Kalman filter has been used to update the rating curve parameters in near real time. The temporal variability of the b exponent in the rating curve formula shows that it converges toward a constant value. A consistent 21-day time lag, very close to an estimate of the time of concentration, was obtained. The agreement between observed discharge downstream and estimated discharge with and without parameters adjustment was 65 and 95%, respectively. This demonstrates the interesting role that passive microwave can play in monitoring flooding and wetness conditions and estimating key hydrologic parameters

    Monitoring temporal variations in the geothermal activity of Miocene Lesvos volcanic field using remote sensing techniques and MODIS - LST imagery

    Get PDF
    Abstract Many islands of the Aegean Sea show strong geothermal activity due to volcanism in the area. In this paper, Robust Satellite Techniques (RST) are used to isolate, from other known possible sources, those thermal anomalies possibly related to geothermal activity in the Miocene volcanic field of Lesvos Island (Northern Aegean). For this purpose, 12 years (2003–2014) of daily Night-time Land Surface Temperature (LST) products, from Moderate Resolution Imaging Spectroradiometer (MODIS) acquisitions were analyzed. The final dataset contained 770 thermal anomalies whose spatial correlation with geological and structural data of Lesvos - such as caldera rims, ring faults, major tectonic lineaments and hydrothermal alterations mapped by processing SENTINEL-2 MSI satellite images – has been particularly investigated. In the approximately 20 ma geothermal field of Lesvos, geothermal activity seems to be also associated with the extensional regime of the broader area that leads to lithosphere thinning and consequent heat transfer in the multi-fractured terrain of Lesvos through volcanic and tectonic faults. Achieved results seem to confirm the possibility to use RST-based thermal anomalies to identify temporal variations in the geothermal activity probably due to the uplifting and circulation of the hydrothermal waters

    Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation

    Get PDF
    Fire radiative power (FRP) is a basic parameter for fire characterization since it represents the heat emission rate of fires. Moreover, its temporal integration (fire radiative energy, FRE) is used as a proxy for estimating biomass burning and emissions. From satellite, FRP is generally computed by comparing the Medium InfraRed (MIR) signal of the fire pixel with the background value on the event image. Such an approach is possibly affected by some issues due to fire extent, clouds and smoke over the event area. The enlargement of the background window is the commonly used gimmick to face these issues. However, it may include unrepresentative signals of the fire pixel because of very different land use/cover. In this paper, the alternative Background Radiance Estimator by a Multi-temporal Approach (BREMA), based on the Robust Satellite Technique (RST), is proposed to characterize background and compute FRP. The approach is presented using data from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) platform. Moreover, BREMA is here combined with the RST-FIRES (RST for FIRES detection) technique for fire pixel identification and the -SEVIRI retrieval algorithm for transmittance evaluation. Results compared to the operational SEVIRI-based FRP-PIXEL product, although highly correlated in terms of background radiance (r2=0.95) and FRP values (r2=0.96), demonstrated a major capability of BREMA to estimate background radiances regardless of cloudiness or smoke presence during the event and independently on fire extent. The possible impact of the proposed approach on the estimates of CO2 emissions was also evaluated for comparison with the Global Fire Emissions Database (GFED4s)

    Mt. Etna Paroxysms of February–April 2021 Monitored and Quantified through a Multi-Platform Satellite Observing System

    Get PDF
    On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and Infrared Imager (SEVIRI), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most powerful, with values of radiative power estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 1st and 3rd paroxysm (18 and 28 February) generated the largest thermal anomaly at Mt. Etna after June 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions

    results of the first wave glider experiment in the southern tyrrhenian sea

    Get PDF
    A wave-propelled autonomous vehicle (Wave Glider) instrumented with a variety of oceanographic and meteorological sensors was launched from Gulf of Naples on the 12th of September 2012 for a two-week mission in the Southern Tyrrhenian Sea. The main objective of the mission was a preliminary evaluation of the potential of commercial autonomous platforms to provide reliable measurements of sea surface parameters which can complement existing satellite based products moving from the local to the synoptic scale. To this aim Wave Glider measurements were compared to equivalent, or near-equivalent, satellite products achieved from MODIS (Moderate Resolution Imaging Spectroradiometer) sensors onboard the EOS (Earth Observing System) satellite platforms and from AVISO (Archiving Validation and Interpretation of Satellite Oceanographic Data). Level-3 near real time and Level-4 reprocessed sea surface foundation temperature products provided by the CMEMS (Copernicus Marine Environment Monitoring Service) were also included in this study as well as high resolution model output supplied by NEMO (Nucleus for European Modelling of the Ocean). The Wave Glider was equipped with sensors to measure temperature, salinity, currents, as well as Colored Dissolved Organic Matter (CDOM), turbidity and refined fuels fluorescence. The achieved results confirmed the emerging value of Wave Gliders in the framework of multiplatform monitoring systems of the ocean surface parameters. In particular, they showed that Wave Glider measurements captured the southern Tyrrhenian Sea major surface oceanographic features, including the coast to open sea haline gradient and the presence of a cyclone-anticyclone system in the southeastern sub-region. The Wave Glider also had the capability to monitor upper ocean currents at finer spatial and temporal scales than satellite altimetric observations and model outputs. Nonetheless, results stressed the existence of several limits in the combined use of satellite and Wave Glider observations and the necessity of further analyses concerning the monitoring of the ocean optical properties. In fact, Wave Glider and satellite-based products agree in terms of sea surface temperature and currents patterns, while bio-optical properties turned out to be less well correlated. No significant traces of refined fuels have been detected along the WG track.</p

    Assessing Performance of the RSTVOLC Multi-Temporal Algorithm in Detecting Subtle Hot Spots at Oldoinyo Lengai (Tanzania, Africa) for Comparison with MODLEN

    No full text
    The identification of subtle thermal anomalies (i.e., of low-temperature and/or spatial extent) at volcanoes by satellite is of great interest for scientists, especially because minor changes in surface temperature might reveal an unrest phase or impending activity. A good test case for assessing the sensitivity level of satellite-based methods is to study the thermal activity of Oldoinyo Lengai (OL) (Africa, Tanzania), which is the only volcano on Earth emitting natrocarbonatite lavas at a lower temperature (i.e., in the range 500&ndash;600 &deg;C) than usual magmatic surfaces. In this work, we assess the potential of the RSTVOLC multi-temporal algorithm in detecting subtle hot spots at OL for comparison with MODLEN: A thermal anomaly detection method tailored to OL local conditions, by using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Our results investigating the eruptive events of 2000&ndash;2008 using RSTVOLC reveal the occurrence of several undocumented thermal activities of OL, and may successfully integrate MODLEN observations. In spite of some known limitations strongly affecting the identification of volcanic thermal anomalies from space (e.g., cloud cover; occurrence of short-lived events), this work demonstrates that RSTVOLC may provide a very important contribution for monitoring the OL, identifying subtle hot spots showing values of the radiant flux even around 1 MW

    The VIIRS-Based RST-FLARE Configuration: The Val d’Agri Oil Center Gas Flaring Investigation in Between 2015–2019

    No full text
    The RST (Robust Satellite Techniques)-FLARE algorithm is a satellite-based method using a multitemporal statistical analysis of nighttime infrared signals strictly related to industrial hotspots, such as gas flares. The algorithm was designed for both identifying and characterizing gas flares in terms of radiant/emissive power. The Val d&rsquo;Agri Oil Center (COVA) is a gas and oil pre-treatment plant operating for about two decades within an anthropized area of Basilicata region (southern Italy) where it represents a significant potential source of social and environmental impacts. RST-FLARE, developed to study and monitor the gas flaring activity of this site by means of MODIS (Moderate Resolution Imaging Spectroradiometer) data, has exported VIIRS (Visible Infrared Imaging Radiometer Suite) records by exploiting the improved spatial and spectral properties offered by this sensor. In this paper, the VIIRS-based configuration of RST-FLARE is presented and its application on the recent (2015-2019) gas flaring activity at COVA is analyzed and discussed. Its performance in gas flaring characterization is in good agreement with VIIRS Nightfire outputs to which RST-FLARE seems to provide some add-ons. The great consistency of radiant heat estimates computed with both RST-FLARE developed configurations allows proposing a multi-sensor RST-FLARE strategy for a more accurate multi-year analysis of gas flaring

    On the potential of the RST-FLARE algorithm for gas flaring characterization from space

    No full text
    An effective characterization of gas flaring is hampered by the lack of systematic, complete and reliable data on its magnitude and spatial distribution. In the last years, a few satellite methods have been developed to provide independent information on gas flaring activity at global, national and local scale. Among these, a MODIS-based method, aimed at the computation of gas flared volumes by an Italian plant, was proposed. In this work, a more general version of this approach, named RST-FLARE, has been developed to provide reliable information on flaring sites localization and gas emitted volumes over a long time period for the Niger Delta region, one of the top five gas flaring areas in the world. Achieved results showed a good level of accuracy, in terms of flaring sites localization (95% of spatial match) and volume estimates (mean bias between in 16% and 20%, at annual scale and 2–9% in the long period) when compared to independent data, provided both by other satellite techniques and national/international organizations. Outcomes of this work seem to indicate that RST-FLARE can be used to provide, at different geographic scales, quite accurate data on gas flaring, suitable for monitoring purposes for governments and local authorities

    Improving the RST-OIL Algorithm for Oil Spill Detection under Severe Sun Glint Conditions

    No full text
    In recent years, the risk related to oil spill accidents has significantly increased due to a global growth in offshore extraction and oil maritime transport. To ensure sea safety, the implementation of a monitoring system able to provide real-time coverage of large areas and a timely alarm in case of accidents is of major importance. Satellite remote sensing, thanks to its inherent peculiarities, has become an essential component in such a system. Recently, the general Robust Satellite Technique (RST) approach has been successfully applied to oil spill detection (RST-OIL) using optical band satellite data. In this paper, an advanced configuration of RST-OIL is presented, and we aim to extend its applicability to a larger set of observation conditions, referring, in particular, to those in the presence of severe sun glint effects that generate some detection limits to the RST-OIL standard algorithm. To test such a configuration, the DeepWater Horizon platform accident from April 2010 was selected as a test case. We analyzed a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) images that are usually significantly affected by sun glint in the Gulf of Mexico area. The accuracy of the achieved results was evaluated for comparison with a well-established satellite methodology based on microwave data, which confirms the potential of the proposed approach in identifying the oil presence on the scene with good accuracy and reliability, even in these severe conditions
    corecore